Escherichia coli ribonucleotide reductase expression is cell cycle regulated.

Author:

Sun L1,Fuchs J A1

Affiliation:

1. Department of Biochemistry, University of Minnesota, St. Paul 55108.

Abstract

The expression of the genes encoding ribonucleotide reductase in Escherichia coli was investigated in cultures synchronized by obtaining the smallest cells in a population after sucrose gradient centrifugation. Specific activity of ribonucleotide reductase and DNA initiation were found to increase in parallel, periodically as a function of the cell cycle. The expression of nrd was also determined in cells synchronized by periodic repeated doubling in a phosphate limited medium. Antibodies directed against the B2 subunit of ribonucleotide reductase were raised in a rabbit and purified. Immunoprecipitation of the B2 subunit and RNA-DNA dot blot hybridization assays were developed and employed to determine the expression of ribonucleotide reductase translational and transcriptional products during the cell cycle. Both of nrd-mRNA and B2 subunit expression were found to increase each generation at approximately the same time DNA synthesis was initiated and then to decrease back to the basal level shortly after DNA initiation. These results provided evidence of cell cycle dependent regulation of ribonucleotide reductase in E. coli. When the upstream regulatory region of nrd was fused to a promoterless lacZ gene on a single copy plasmid, lac-mRNA and beta-galactosidase were found to be synthesized in parallel to nrd expression from the chromosomal operon. When nrd sequences surrounding the promoter were removed from this construct, lac-mRNA and beta-galactosidase synthesis were no longer cell cycle regulated.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3