Isolation and Transcription Profiling of Purified Uncultured Human Stromal Stem Cells: Alteration of Gene Expression after In Vitro Cell Culture
-
Published:2005-03
Issue:3
Volume:16
Page:1131-1141
-
ISSN:1059-1524
-
Container-title:Molecular Biology of the Cell
-
language:en
-
Short-container-title:MBoC
Author:
Boquest Andrew C.1, Shahdadfar Aboulghassem2, Frønsdal Katrine2, Sigurjonsson Olafur2, Tunheim Siv H.3, Collas Philippe1, Brinchmann Jan E.2
Affiliation:
1. Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway 2. Institute of Immunology, Rikshospitalet University Hospital, 0027 Oslo, Norway 3. Centre for Occupational and Environmental Medicine, Rikshospitalet University Hospital, 0027 Oslo, Norway
Abstract
Stromal stem cells proliferate in vitro and may be differentiated along several lineages. Freshly isolated, these cells have been too few or insufficiently pure to be thoroughly characterized. Here, we have isolated two populations of CD45-CD34+CD105+ cells from human adipose tissue which could be separated based on expression of CD31. Compared with CD31+ cells, CD31- cells overexpressed transcripts associated with cell cycle quiescence and stemness, and transcripts involved in the biology of cartilage, bone, fat, muscle, and neural tissues. In contrast, CD31+ cells overexpressed transcripts associated with endothelium and the major histocompatibility complex class II complex. Clones of CD31- cells could be expanded in vitro and differentiated into cells with characteristics of bone, fat, and neural-like tissue. On culture, transcripts associated with cell cycle quiescence, stemness, certain cytokines and organ specific genes were down-regulated, whereas transcripts associated with signal transduction, cell adhesion, and cytoskeletal components were up-regulated. CD31+ cells did not proliferate in vitro. CD45-CD34+CD105+CD31- cells from human adipose tissue have stromal stem cell properties which may make them useful for tissue engineering.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Reference25 articles.
1. Arai, F., Ohneda, O., Miyamoto, T., Zhang, X. Q., and Suda, T. (2002). Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J. Exp. Med. 195, 1549-1563. 2. Balint, E., Lapointe, D., Drissi, H., van der Meijden, C., Young, D. W., Van Wijnen, A. J., Stein, J. L., Stein, G. S., and Lian, J. B. (2003). Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J. Cell. Biochem. 89, 401-426. 3. Chi, J. T. et al. (2003). Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100, 10623-10628. 4. Colter, D. C., Class, R., DiGirolamo, C. M., and Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc. Natl. Acad. Sci. USA 97, 3213-3218. 5. Cowan, C. M., Shi, Y. Y., Aalami, O. O., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Contag, C. H., Wu, B., and Longaker, M. T. (2004). Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 22, 560-567.
Cited by
301 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|