Tracking Retrograde Flow in Keratocytes: News from the Front

Author:

Vallotton Pascal1,Danuser Gaudenz12,Bohnet Sophie3,Meister Jean-Jacques3,Verkhovsky Alexander B.3

Affiliation:

1. Laboratory for Biomechanics, ETH Zurich, 8952 Schlieren, Switzerland

2. Laboratory for Computational Cell Biology, The Scripps Research Institute, La Jolla, CA 92037

3. Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Abstract

Actin assembly at the leading edge of the cell is believed to drive protrusion, whereas membrane resistance and contractile forces result in retrograde flow of the assembled actin network away from the edge. Thus, cell motion and shape changes are expected to depend on the balance of actin assembly and retrograde flow. This idea, however, has been undermined by the reported absence of flow in one of the most spectacular models of cell locomotion, fish epidermal keratocytes. Here, we use enhanced phase contrast and fluorescent speckle microscopy and particle tracking to analyze the motion of the actin network in keratocyte lamellipodia. We have detected retrograde flow throughout the lamellipodium at velocities of 1–3 μm/min and analyzed its organization and relation to the cell motion during both unobstructed, persistent migration and events of cell collision. Freely moving cells exhibited a graded flow velocity increasing toward the sides of the lamellipodium. In colliding cells, the velocity decreased markedly at the site of collision, with striking alteration of flow in other lamellipodium regions. Our findings support the universality of the flow phenomenon and indicate that the maintenance of keratocyte shape during locomotion depends on the regulation of both retrograde flow and actin polymerization.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3