The Efficiency of Protein Compartmentalization into the Secretory Pathway

Author:

Levine Corinna G.1,Mitra Devarati1,Sharma Ajay1,Smith Carolyn L.2,Hegde Ramanujan S.1

Affiliation:

1. Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892

2. Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892

Abstract

Numerous proteins targeted for the secretory pathway are increasingly implicated in functional or pathological roles at alternative cellular destinations. The parameters that allow secretory or membrane proteins to reside in intracellular locales outside the secretory pathway remain largely unexplored. In this study, we have used an extremely sensitive and quantitative assay to measure the in vivo efficiency of signal sequence-mediated protein segregation into the secretory pathway. Our findings reveal that segregation efficiency varies tremendously among signals, ranging from >95 to <60%. The nonsegregated fraction is generated by a combination of mechanisms that includes inefficient signal-mediated translocation into the endoplasmic reticulum and leaky ribosomal scanning. The segregation efficiency of some, but not other signal sequences, could be influenced in cis by residues in the mature domain or in trans by yet unidentified cellular factors. These findings imply that protein compartmentalization can be modulated in a substrate-specific manner to generate biologically significant quantities of cytosolically available secretory and membrane proteins.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3