Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component.

Author:

Woods A1,Couchman J R1

Affiliation:

1. Department of Cell Biology, University of Alabama at Birmingham 35294-0019.

Abstract

Focal adhesion formation in fibroblasts results from complex transmembrane signaling processes initiated by extracellular matrix molecules. Although a role for integrins with attendant tyrosine kinases has been established, there is evidence that cell surface heparan sulfate proteoglycans (HSPGs) are also involved with an associated role of protein kinase C. The identity of the proteoglycan has remained elusive, but we now report that syndecan 4 (ryudocan/amphiglycan) is present in focal adhesions of a number of cell types. Affinity-purified antibodies raised against a unique portion of the cytoplasmic domain of syndecan 4 core protein recognized an HSPG of similar characteristics to those of syndecan 4. These antibodies stained focal adhesions only after cell permeabilization and recognized differing mammalian species. Syndecan 4 was associated with focal adhesions that contained either beta 1 or beta 3 integrin subunits and those that formed on substrates of fibronectin, laminin, vitronectin, or type I collagen. No focal adhesions were found that were vinculin-containing but lacked syndecan 4. In contrast, syndecan 2, whose cytoplasmic domain is closely homologous to syndecan 4, does not appear to be a focal adhesion component. Thus, syndecan 4 represents a new transmembrane focal adhesion component, probably involved in their assembly.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 296 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shaping Oncogenic Microenvironments: Contribution of Fibronectin;Frontiers in Cell and Developmental Biology;2024-04-10

2. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist;Journal of Biological Chemistry;2023-03

3. Functional Interplay Between Fibronectin and Matricellular Proteins in the Control of Endothelial Tubulogenesis;Matrix Pathobiology and Angiogenesis;2022-12-19

4. Integrin α11β1 and syndecan-4 dual receptor ablation attenuate cardiac hypertrophy in the pressure overloaded heart;American Journal of Physiology-Heart and Circulatory Physiology;2022-06-01

5. Coreceptor functions of cell surface heparan sulfate proteoglycans;American Journal of Physiology-Cell Physiology;2022-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3