Affiliation:
1. Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115.
Abstract
Mitogen-activated protein kinases (MAPKs) are rapidly and transiently activated when both quiescent Go-arrested cells and G2-arrested oocytes are stimulated to reenter the cell cycle. We previously developed a cell-free system from lysates of quiescent Xenopus oocytes that responds to oncogenic H-ras protein by activating a MAPK, p42MAPK. Here, we show that the oncogenic protein kinase mos is also a potent activator of p42MAPK in these lysates. Mos also induces p42MAPK activation in lysates of activated eggs taken at a time when neither mos nor p42MAPK is normally active, showing that the mos-responsive MAPK activation pathway persists beyond the stage where mos normally functions. Similarly, lysates of somatic cells (rabbit reticulocytes) also retain a mos-inducible MAPK activation pathway. The mos-induced activation of MAPKs in all three lysates leads to phosphorylation of the pp90rsk proteins, downstream targets of the MAPK signaling pathway in vivo. The in vitro activation of MAPKs by mos in cell-free systems derived from oocytes and somatic cells suggests that mos contributes to oncogenic transformation by inappropriately inducing the activation of MAPKs.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献