Nitric oxide–dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition

Author:

Chen Zhenlong1,Bakhshi Farnaz R.1,Shajahan Ayesha N.2,Sharma Tiffany1,Mao Mao3,Trane Andy4,Bernatchez Pascal4,van Nieuw Amerongen Geerten P.5,Bonini Marcelo G.13,Skidgel Randal A.16,Malik Asrar B.16,Minshall Richard D.167

Affiliation:

1. Department of Pharmacology, University of Illinois, Chicago, IL 60612

2. Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057

3. Department of Medicine, University of Illinois, Chicago, IL 60612

4. Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, James Hogg Research Centre, Providence Heart and Lung Institute, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada

5. Department for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081 BT Amsterdam, Netherlands

6. Center for Lung and Vascular Biology, University of Illinois, Chicago, IL 60612

7. Department of Anesthesiology, University of Illinois, Chicago, IL 60612

Abstract

Endothelial nitric oxide synthase (eNOS)–mediated NO production plays a critical role in the regulation of vascular function and pathophysiology. Caveolin-1 (Cav-1) binding to eNOS holds eNOS in an inactive conformation; however, the mechanism of Cav-1–mediated inhibition of activated eNOS is unclear. Here the role of Src-dependent Cav-1 phosphorylation in eNOS negative feedback regulation is investigated. Using fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses, we observed increased interaction between eNOS and Cav-1 following stimulation of endothelial cells with thrombin, vascular endothelial growth factor, and Ca2+ionophore A23187, which is corroborated in isolated perfused mouse lung. The eNOS/Cav-1 interaction is blocked by eNOS inhibitor l-NG-nitroarginine methyl ester (hydrochloride) and Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyrimidine. We also observe increased binding of phosphomimicking Y14D-Cav-1 mutant transduced in human embryonic kidney cells overexpressing eNOS and reduced Ca2+-induced NO production compared to cells expressing the phosphodefective Y14F-Cav-1 mutant. Finally, Src FRET biosensor, eNOS small interfering RNA, and NO donor studies demonstrate NO-induced Src activation and Cav-1 phosphorylation at Tyr-14, resulting in increased eNOS/Cav-1 interaction and inhibition of eNOS activity. Taken together, these data suggest that activation of eNOS promotes Src-dependent Cav-1–Tyr-14 phosphorylation and eNOS/Cav-1 binding, that is, eNOS feedback inhibition.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3