Fer kinase regulates cell migration through α-dystroglycan glycosylation

Author:

Yoneyama Tohru1,Angata Kiyohiko1,Bao Xingfeng1,Courtneidge Sara1,Chanda Sumit K.2,Fukuda Minoru1

Affiliation:

1. Glycobiology Unit, Tumor Microenvironment Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037

2. Inflammatory Disease Program, Infectious and Inflammatory Diseases Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037

Abstract

Glycans of α-dystroglycan (α-DG), which is expressed at the epithelial cell–basement membrane (BM) interface, play an essential role in epithelium development and tissue organization. Laminin-binding glycans on α-DG expressed on cancer cells suppress tumor progression by attenuating tumor cell migration from the BM. However, mechanisms controlling laminin-binding glycan expression are not known. Here, we used small interfering RNA (siRNA) library screening and identified Fer kinase, a non–receptor-type tyrosine kinase, as a key regulator of laminin-binding glycan expression. Fer overexpression decreased laminin-binding glycan expression, whereas siRNA-mediated down-regulation of Fer kinase increased glycan expression on breast and prostate cancer cell lines. Loss of Fer kinase function via siRNA or mutagenesis increased transcription levels of glycosyltransferases, including protein O-mannosyltransferase 1, β3-N-acetylglucosaminyltransferase 1, and like-acetylglucosaminyltransferase that are required to synthesize laminin-binding glycans. Consistently, inhibition of Fer expression decreased cell migration in the presence of laminin fragment. Fer kinase regulated STAT3 phosphorylation and consequent activation, whereas knockdown of STAT3 increased laminin-binding glycan expression on cancer cells. These results indicate that the Fer pathway negatively controls expression of genes required to synthesize laminin-binding glycans, thus impairing BM attachment and increasing tumor cell migration.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3