The E3 Ubiquitin Ligases Hrd1 and gp78 Bind to and Promote Cholera Toxin Retro-Translocation

Author:

Bernardi Kaleena M.1,Williams Jeffrey M.1,Kikkert Marjolein2,van Voorden Sjaak2,Wiertz Emmanuel J.23,Ye Yihong4,Tsai Billy1

Affiliation:

1. *Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109;

2. Leiden University Medical Center, Department of Medical Microbiology, Section Molecular Virology, 2333 ZA Leiden, The Netherlands;

3. Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; and

4. Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892

Abstract

To cause disease, cholera toxin (CT) is transported from the cell surface to the endoplasmic reticulum (ER) lumen where the catalytic CTA1 subunit retro-translocates to the cytosol to induce pathological water secretion. Two retro-translocon components are the Derlins and ER-associated multi-spanning E3 ubiquitin ligases including Hrd1 and gp78. We demonstrated previously that Derlin-1 facilitates CTA1 retro-translocation. However, as CTA1 is neither ubiquitinated on lysines nor at its N-terminus, the role of E3 ligases in toxin retro-translocation is unclear. Here, we show that expression of mutant Hrd1 and gp78 and a mutant E2-conjugating enzyme dedicated to retro-translocation (Ube2g2) decrease CTA1 retro-translocation. Hrd1 knockdown also attenuated toxin retro-translocation. Binding studies demonstrate that Hrd1 and gp78 interact with CT and protein disulfide isomerase, an ER chaperone that unfolds CTA1 to initiate translocation. Moreover, we find that the toxin's association with Hrd1 and gp78 is blocked by dominant-negative Derlin-1, suggesting that CT is targeted initially to Derlin-1 and then transferred to Hrd1 and gp78. These data demonstrate a role of the E3 ubiquitin ligases in CTA1 retro-translocation, implicate a sequence of events experienced by the toxin on the ER membrane, and raise the possibility that ubiquitination is involved in the transport process.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3