Affiliation:
1. Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
Abstract
The molecular mechanisms that regulate the organization and activity of the neuromuscular junction remain to be fully identified. Caveolae are invaginations of the plasma membrane. Caveolin-3 is the structural protein component of caveolae in muscle cells. We show that caveolin-3 is expressed at the neuromuscular junction, that it associates with the nicotinic acetylcholine receptor (nAChR), and that a lack of caveolin-3 inhibits clustering of the nAChR in myotubes. At the molecular level, we demonstrate that caveolin-3 is a novel muscle-specific kinase (MuSK) binding protein and that altered nAChR clustering in caveolin-3–lacking myotubes results from inhibition of agrin-induced phosphorylation/activation of MuSK and activation of Rac-1. Functional studies in caveolin-3 null mice show abnormal neuromuscular junction activity that is consistent with altered nAChR localization at the sarcolemma. Together, these data identify caveolin-3 as a critical component of the signaling machinery that drives nicotinic acetylcholine receptor clustering and controls neuromuscular junction function.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献