Physical and Functional Interaction of Transmembrane Thioredoxin-related Protein with Major Histocompatibility Complex Class I Heavy Chain: Redox-based Protein Quality Control and Its Potential Relevance to Immune Responses

Author:

Matsuo Yoshiyuki1,Masutani Hiroshi1,Son Aoi1,Kizaka-Kondoh Shinae2,Yodoi Junji1

Affiliation:

1. *Department of Biological Responses, Institute for Virus Research, and

2. Innovative Techno-Hub for Integrated Medical Bio-imaging, Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan

Abstract

In the endoplasmic reticulum (ER), a variety of oxidoreductases classified in the thioredoxin superfamily have been found to catalyze the formation and rearrangement of disulfide bonds. However, the precise function and specificity of the individual thioredoxin family proteins remain to be elucidated. Here, we characterize a transmembrane thioredoxin-related protein (TMX), a membrane-bound oxidoreductase in the ER. TMX exists in a predominantly reduced form and associates with the molecular chaperon calnexin, which can mediate substrate binding. To determine the target molecules for TMX, we apply a substrate-trapping approach based on the reaction mechanism of thiol-disulfide exchange, identifying major histocompatibility complex (MHC) class I heavy chain (HC) as a candidate substrate. Unlike the classical ER oxidoreductases such as protein disulfide isomerase and ERp57, TMX seems not to be essential for normal assembly of MHC class I molecules. However, we show that TMX–class I HC interaction is enhanced during tunicamycin-induced ER stress, and TMX prevents the ER-to-cytosol retrotranslocation of misfolded class I HC targeted for proteasomal degradation. These results suggest a specific role for TMX and its mechanism of action in redox-based ER quality control.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3