Physical State of the Extracellular Matrix Regulates the Structure and Molecular Composition of Cell-Matrix Adhesions

Author:

Katz Ben-Zion1,Zamir Eli2,Bershadsky Alexander2,Kam Zvi2,Yamada Kenneth M.1,Geiger Benjamin2

Affiliation:

1. Craniofacial Developmental Biology and Regeneration Branch, National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, Maryland; and

2. Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel

Abstract

This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, α5β1 integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These “fibrillar adhesions” are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, α5β1integrin forms highly tyrosine-phosphorylated, “classical” focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin–α5β1integrin–tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3