Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent

Author:

Boyd-Shiwarski Cary R.1,Shiwarski Daniel J.2,Roy Ankita1,Namboodiri Hima N.1,Nkashama Lubika J.1,Xie Jian3,McClain Kara L.1,Marciszyn Allison1,Kleyman Thomas R.14,Tan Roderick J.1,Stolz Donna B.4,Puthenveedu Manojkumar A.2,Huang Chou-Long3,Subramanya Arohan R.145

Affiliation:

1. Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261

2. Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213

3. Department of Internal Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242

4. Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261

5. VA Pittsburgh Healthcare System, Pittsburgh, PA 15240

Abstract

With-no-lysine (WNK) kinases coordinate volume and potassium homeostasis by regulating renal tubular electrolyte transport. In the distal convoluted tubule (DCT), potassium imbalance causes WNK signaling complexes to concentrate into large discrete foci, which we call “WNK bodies.” Although these structures have been reported previously, the mechanisms that drive their assembly remain obscure. Here, we show that kidney-specific WNK1 (KS-WNK1), a truncated kinase-defective WNK1 isoform that is highly expressed in the DCT, is critical for WNK body formation. While morphologically distinct WNK bodies were evident in the distal tubules of mice subjected to dietary potassium loading and restriction, KS-WNK1 knockout mice were deficient in these structures under identical conditions. Combining in vivo observations in kidney with reconstitution studies in cell culture, we found that WNK bodies are dynamic membraneless foci that are distinct from conventional organelles, colocalize with the ribosomal protein L22, and cluster the WNK signaling pathway. The formation of WNK bodies requires an evolutionarily conserved cysteine-rich hydrophobic motif harbored within a unique N-terminal exon of KS-WNK1. We propose that WNK bodies are not pathological aggregates, but rather are KS-WNK1–dependent microdomains of the DCT cytosol that modulate WNK signaling during physiological shifts in potassium balance.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3