Motor activity and mitotic spindle localization of the Drosophila kinesin-like protein KLP61F.

Author:

Barton N R1,Pereira A J1,Goldstein L S1

Affiliation:

1. Howard Hughes Medical Institute, University of California San Diego, Department of Pharmacology, La Jolla 92093-0683, USA.

Abstract

The KLP61F gene product is essential for Drosophila development. Mutations in KLP61F display a mitotic arrest phenotype caused by a failure in the proper separation of duplicated centrosomes (Heck et al., 1993). Sequence analysis of KLP61F identified it as a member of the bimC family of kinesin-like microtubule motor proteins. Here we report that KLP61F is distinct from KRP130, a kinesin-like protein recently purified from Drosophila embryos and suggested to be the product of the KLP61F gene (Cole et al., 1994). We also characterized recombinant KLP61F and found that it possesses microtubule-stimulated ATPase and microtubule translocation activities in vitro. In addition, we have used an affinity-purified, KLP61F-specific antiserum to localize native KLP61F and an epitope-tagged KLP61F fusion protein during various stages of mitosis in Drosophila syncytial blastoderm embryos. From early prophase through anaphase, KLP61F is coincident with the distribution of tubulin. Together these results confirm the existence of multiple bimC-like kinesins in Drosophila and suggest that KLP61F function is intrinsic to the mitotic spindle.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3