Spindle Formation inAspergillusIs Coupled to Tubulin Movement into the Nucleus

Author:

Ovechkina Yulia1,Maddox Paul2,Oakley C. Elizabeth1,Xiang Xin3,Osmani Stephen A.1,Salmon Edward D.2,Oakley Berl R.1

Affiliation:

1. Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210

2. Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599

3. Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814

Abstract

In many important organisms, including many algae and most fungi, the nuclear envelope does not disassemble during mitosis. This fact raises the possibility that mitotic onset and/or exit might be regulated, in part, by movement of important mitotic proteins into and out of the nucleoplasm. We have used two methods to determine whether tubulin levels in the nucleoplasm are regulated in the fungus Aspergillus nidulans. First, we have used benomyl to disassemble microtubules and create a pool of free tubulin that can be readily observed by immunofluorescence. We find that tubulin is substantially excluded from interphase nuclei, but is present in mitotic nuclei. Second, we have observed a green fluorescent protein/α-tubulin fusion in living cells by time-lapse spinning-disk confocal microscopy. We find that tubulin is excluded from interphase nuclei, enters the nucleus seconds before the mitotic spindle begins to form, and is removed from the nucleoplasm during the M-to-G1transition. Our data indicate that regulation of intranuclear tubulin levels plays an important, perhaps essential, role in the control of mitotic spindle formation in A. nidulans. They suggest that regulation of protein movement into the nucleoplasm may be important for regulating mitotic onset in organisms with intranuclear mitosis.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3