Scd5p and Clathrin Function Are Important for Cortical Actin Organization, Endocytosis, and Localization of Sla2p in Yeast

Author:

Henry Kenneth R.12,D'Hondt Kathleen3,Chang JiSuk1,Newpher Thomas1,Huang Kristen1,Hudson R. Tod1,Riezman Howard,Lemmon Sandra K.1

Affiliation:

1. Department of Molecular Biology and Microbiology and

2. Program in Genetics, Case Western Reserve University, Cleveland Ohio 44106; and

3. Biozentrum of the University of Basel, CH-4056 Basel, Switzerland

Abstract

SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but anscd5-Δ338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Δ338affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Δ338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars.scd5-Δ338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression ofSCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Δ338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3