Direct Interaction between a Myosin V Motor and the Rab GTPases Ypt31/32 Is Required for Polarized Secretion

Author:

Lipatova Zhanna1,Tokarev Andrei A.1,Jin Yui2,Mulholland Jon3,Weisman Lois S.2,Segev Nava1

Affiliation:

1. *Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607;

2. Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109; and

3. Cell Sciences Imaging Facility, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5301

Abstract

Rab GTPases recruit myosin motors to endocytic compartments, which in turn are required for their motility. However, no Ypt/Rab GTPase has been shown to regulate the motility of exocytic compartments. In yeast, the Ypt31/32 functional pair is required for the formation of trans-Golgi vesicles. The myosin V motor Myo2 attaches to these vesicles through its globular-tail domain (GTD) and mediates their polarized delivery to sites of cell growth. Here, we identify Myo2 as an effector of Ypt31/32 and show that the Ypt31/32–Myo2 interaction is required for polarized secretion. Using the yeast-two hybrid system and coprecipitation of recombinant proteins, we show that Ypt31/32 in their guanosine triphosphate (GTP)-bound form interact directly with Myo2-GTD. The physiological relevance of this interaction is shown by colocalization of the proteins, genetic interactions between their genes, and rescue of the lethality caused by a mutation in the Ypt31/32-binding site of Myo2-GTD through fusion with Ypt32. Furthermore, microscopic analyses show a defective Myo2 intracellular localization in ypt31Δ/32ts and in Ypt31/32-interaction–deficient myo2 mutant cells, as well as accumulation of unpolarized secretory vesicles in the latter mutant cells. Together, these results indicate that Ypt31/32 play roles in both the formation of trans-Golgi vesicles and their subsequent Myo2-dependent motility.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3