Affiliation:
1. Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
Abstract
The S-phase DNA damage checkpoint slows the rate of DNA synthesis in response to damage during replication. In the fission yeast Schizosaccharomyces pombe, Cds1, the S-phase-specific checkpoint effector kinase, is required for checkpoint signaling and replication slowing; upon treatment with the alkylating agent methyl methane sulfonate, cds1Δ mutants display a complete checkpoint defect. We have identified proteins downstream of Cds1 required for checkpoint-dependant slowing, including the structure-specific endonuclease Mus81 and the helicase Rqh1, which are implicated in replication fork stability and the negative regulation of recombination. Removing Rhp51, the Rad51 recombinase homologue, suppresses the slowing defect of rqh1Δ mutants, but not that of mus81Δ mutant, defining an epistatic pathway in which mus81 is epistatic to rhp51 and rhp51 is epistatic to rqh1. We propose that restraining recombination is required for the slowing of replication in response to DNA damage.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献