Nucleolar structure connects with global nuclear organization

Author:

Wang Chen1,Ma Hanhui23,Baserga Susan J.456,Pederson Thoru2,Huang Sui1ORCID

Affiliation:

1. Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611

2. Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605

3. School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

4. Department of Genetics, Yale School of Medicine, New Haven, CT 06520

5. Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520

6. Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520

Abstract

The nucleolus is a multifunctional nuclear body. To tease out the roles of nucleolar structure without resorting to the use of multi-action drugs, we knocked down the RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar-structural segregation and effects on both nucleolus-proximal and distal-nuclear components. The perinucleolar compartment was disrupted, centromere clustering around nucleoli was significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and some compositional changes. In comparison, when the preribosomal RNA-processing factor, UTP4, was knocked down, neither nucleolar segregation nor the intranuclear effects were observed, demonstrating that the changes of nucleolar proximal and distal nuclear domains in RPA194 knockdown cells unlikely arise from a cessation of ribosome synthesis, rather from the consequence of nucleolar-structure alteration. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear domains and genomic loci.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3