α-catenin middle- and actin-binding domain unfolding mutants differentially impact epithelial strength and sheet migration

Author:

Quinn Jeanne M.1ORCID,Wang Yuou1ORCID,Wood Megan1,Flozak Annette S.1,Le Phuong M.1,Yemelyanov Alex1,Oakes Patrick W.2ORCID,Gottardi Cara J.13ORCID

Affiliation:

1. Department of Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611

2. Department of Cell & Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153

3. Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611

Abstract

α-catenin (α-cat) displays force-dependent unfolding and binding to actin filaments through direct and indirect means, but features of adherens junction structure and function most vulnerable to loss of these allosteric mechanisms have not been directly compared. By reconstituting an α-cat F-actin-binding domain unfolding mutant known to exhibit enhanced binding to actin (α-cat-H0-FABD+) into α-cat knockout Madin Darby Canine Kidney (MDCK) cells, we show that partial loss of the α-cat catch bond mechanism (via an altered H0 α-helix) leads to stronger epithelial sheet integrity with greater colocalization between the α-cat-H0-FABD+ mutant and actin. α-cat-H0-FABD+ -expressing cells are less efficient at closing scratch-wounds, suggesting reduced capacity for more dynamic cell–cell coordination. Evidence that α-cat-H0-FABD+ is equally accessible to the conformationally sensitive α18 antibody epitope as WT α-cat and shows similar vinculin recruitment suggests this mutant engages lower tension cortical actin networks, as its M-domain is not persistently open. Conversely, α-cat-M-domain salt-bridge mutants with persistent recruitment of vinculin and phosphorylated myosin light chain show only intermediate monolayer adhesive strengths, but display less directionally coordinated and thereby slower migration speeds during wound-repair. These data show α-cat M- and FABD-unfolding mutants differentially impact cell–cell cohesion and migration properties, and suggest signals favoring α-cat-cortical actin interaction without persistent M-domain opening may improve epithelial monolayer strength through enhanced coupling to lower tension actin networks.

Publisher

American Society for Cell Biology (ASCB)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3