Functional genomic screen identifies novel mediators of collagen uptake

Author:

Lee Ting-Hein12,McKleroy William12,Khalifeh-Soltani Amin12,Sakuma Stephen12,Lazarev Stanislav23,Riento Kirsi4,Nishimura Stephen L.5,Nichols Ben J.4,Atabai Kamran123

Affiliation:

1. Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158

2. Department of Medicine, University of California, San Francisco, San Francisco, CA 94158

3. Lung Biology Center, University of California, San Francisco, San Francisco, CA 94158

4. MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

5. Department of Pathology, University of California, San Francisco, San Francisco, CA 94158

Abstract

Tissue fibrosis occurs when matrix production outpaces matrix degradation. Degradation of collagen, the main component of fibrotic tissue, is mediated through an extracellular proteolytic pathway and intracellular pathway of cellular uptake and lysosomal digestion. Recent studies demonstrate that disruption of the intracellular pathways can exacerbate fibrosis. These pathways are poorly characterized. Here we identify novel mediators of the intracellular pathway of collagen turnover through a genome-wide RNA interference screen in Drosophila S2 cells. Screening of 7505 Drosophila genes conserved among metazoans identified 22 genes that were required for efficient internalization of type I collagen. These included proteins involved in vesicle transport, the actin cytoskeleton, and signal transduction. We show further that the flotillin genes have a conserved and central role in collagen uptake in Drosophila and human cells. Short hairpin RNA–mediated silencing of flotillins in human monocyte and fibroblasts impaired collagen uptake by promoting lysosomal degradation of the endocytic collagen receptors uPARAP/Endo180 and mannose receptor. These data provide an initial characterization of intracellular pathways of collagen turnover and identify the flotillin genes as critical regulators of this process. A better understanding of these pathways may lead to novel therapies that reduce fibrosis by increasing collagen turnover.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3