Histone Deacetylase Inhibitors Trigger a G2 Checkpoint in Normal Cells That Is Defective in Tumor Cells

Author:

Qiu Ling1,Burgess Andrew1,Fairlie David P.2,Leonard Helen1,Parsons Peter G.1,Gabrielli Brian G.1

Affiliation:

1. Queensland Cancer Fund Laboratories, Queensland Institute of Medical Research, and Joint Experimental Oncology Program, Department of Pathology, University of Queensland, Brisbane, Queensland, Australia; and

2. Centre for Drug Design and Development, University of Queensland, St. Lucia, Queensland, Australia

Abstract

Important aspects of cell cycle regulation are the checkpoints, which respond to a variety of cellular stresses to inhibit cell cycle progression and act as protective mechanisms to ensure genomic integrity. An increasing number of tumor suppressors are being demonstrated to have roles in checkpoint mechanisms, implying that checkpoint dysfunction is likely to be a common feature of cancers. Here we report that histone deacetylase inhibitors, in particular azelaic bishydroxamic acid, triggers a G2 phase cell cycle checkpoint response in normal human cells, and this checkpoint is defective in a range of tumor cell lines. Loss of this G2 checkpoint results in the tumor cells undergoing an aberrant mitosis resulting in fractured multinuclei and micronuclei and eventually cell death. This histone deacetylase inhibitor-sensitive checkpoint appears to be distinct from G2/M checkpoints activated by genotoxins and microtubule poisons and may be the human homologue of a yeast G2 checkpoint, which responds to aberrant histone acetylation states. Azelaic bishydroxamic acid may represent a new class of anticancer drugs with selective toxicity based on its ability to target a dysfunctional checkpoint mechanism in tumor cells.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3