Disruption of epithelial cell-cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin.

Author:

Fujimori T1,Takeichi M1

Affiliation:

1. Department of Biophysics, Faculty of Science, Kyoto University, Japan.

Abstract

Cadherins, a family of transmembrane cell-cell adhesion receptors, require interactions with the cytoskeleton for normal function. To assess the mechanisms of these interactions, we studied the effect of exogenous expression of a mutant N-cadherin, cN390 delta; on epithelial cell-cell adhesion. The intracellular domain of cN390 delta was intact but its extracellular domain was largely deleted so that this molecule was not functional for cell adhesion. cDNA of cN390 delta was attached to the metallothionein promoter, and introduced into the keratinocyte line PAM212 expressing endogenous E- and P-cadherin. When the expression of cN390 delta was induced by Zn2+, cadherin-dependent adhesion of the transfected cells was inhibited, resulting in the dispersion of cell colonies, although their contacts were maintained under high cell density conditions. In these cultures, cN390 delta was expressed not only on the free surfaces of the cells but also at cell-cell junctions. The endogenous cadherins were concentrated at cell-cell junctions under normal conditions. As a result of cN390 delta expression, however, the endogenous cadherins localizing at the cell-cell junctions were largely diminished, suggesting that these molecules were replaced by the mutant molecules at these sites. As a control, we transfected the same cell line with cDNA of a truncated form of N-cadherin cadherin whose intracellular C terminus had been deleted leaving the extracellular domain intact. This molecule had no effect on cell-cell adhesion, nor did it localize to cell-cell contact sites. We also found that the association of the endogenous cadherins with alpha- and beta-catenins and plakoglobin was not affected by the expression of cN390 delta, which also formed a complex with these molecules, suggesting that no competition occurred between the endogenous and exogenous cadherins for these cytoplasmic proteins. These and other additional results suggest that the nonfunctional cadherins whose intracellular domain is intact occupy the sites where the endogenous cadherins should localize, through interactions with the cytoskeleton, and inhibit the cadherin adhesion system.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3