Regulation of N-Cadherin Dynamics at Neuronal Contacts by Ligand Binding and Cytoskeletal Coupling

Author:

Thoumine Olivier1,Lambert Mireille2,Mège René-Marc2,Choquet Daniel1

Affiliation:

1. CNRS, UMR 5091, Institut Magendie de Neurosciences, Université Bordeaux 2, 33077 Bordeaux, France

2. INSERM, U706, Institut du Fer à Moulin, Université Pierre et Marie Curie, 75005 Paris, France

Abstract

N-cadherin plays a key role in axonal outgrowth and synaptogenesis, but how neurons initiate and remodel N-cadherin-based adhesions remains unclear. We addressed this issue with a semiartificial system consisting of N-cadherin coated microspheres adhering to cultured neurons transfected for N-cadherin-GFP. Using optical tweezers, we show that growth cones are particularly reactive to N-cadherin coated microspheres, which they capture in a few seconds and drag rearward. Such strong coupling requires an intact connection between N-cadherin receptors and catenins. As they move to the basis of growth cones, microspheres slow down while gradually accumulating N-cadherin-GFP, demonstrating a clear delay between bead coupling to the actin flow and receptor recruitment. Using FRAP and photoactivation, N-cadherin receptors at bead-to-cell contacts were found to continuously recycle, consistently with a model of ligand-receptor reaction not limited by membrane diffusion. The use of N-cadherin-GFP receptors truncated or mutated in specific cytoplasmic regions show that N-cadherin turnover is exquisitely regulated by catenin partners. Turnover rates are considerably lower than those obtained previously in single molecule studies, demonstrating an active regulation of cadherin bond kinetics in intact cells. Finally, spontaneous neuronal contacts enriched in N-cadherin exhibited similar turnover rates, suggesting that such dynamics of N-cadherin may represent an intrinsic mechanism underlying the plasticity of neuronal adhesions.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3