Cytoplasmic Lipid Droplets Are Sites of Convergence of Proteasomal and Autophagic Degradation of Apolipoprotein B

Author:

Ohsaki Yuki1,Cheng Jinglei1,Fujita Akikazu1,Tokumoto Toshinobu2,Fujimoto Toyoshi1

Affiliation:

1. *Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; and

2. Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan

Abstract

Lipid esters stored in cytoplasmic lipid droplets (CLDs) of hepatocytes are used to synthesize very low-density lipoproteins (VLDLs), into which apolipoprotein B (ApoB) is integrated cotranslationally. In the present study, by using Huh7 cells, derived from human hepatoma and competent for VLDL secretion, we found that ApoB is highly concentrated around CLDs to make “ApoB-crescents.” ApoB-crescents were seen in <10% of Huh7 cells under normal conditions, but the ratio increased to nearly 50% after 12 h of proteasomal inhibition by N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal. Electron microscopy showed ApoB to be localized to a cluster of electron-lucent particles 50–100 nm in diameter adhering to CLDs. ApoB, proteasome subunits, and ubiquitinated proteins were detected in the CLD fraction, and this ApoB was ubiquitinated. Interestingly, proteasome inhibition also caused increases in autophagic vacuoles and ApoB in lysosomes. ApoB-crescents began to decrease after 12–24 h of proteasomal inhibition, but the decrease was blocked by an autophagy inhibitor, 3-methyladenine. Inhibition of autophagy alone caused an increase in ApoB-crescents. These observations indicate that both proteasomal and autophagy/lysosomal degradation of ApoB occur around CLDs and that the CLD surface functions as a unique platform for convergence of the two pathways.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3