Smad2 and Smad3 Play Different Roles in Rat Hepatic Stellate Cell Function and α-Smooth Muscle Actin Organization

Author:

Uemura Masayuki1,Swenson E. Scott2,Gaça Marianna D.A.1,Giordano Frank J.2,Reiss Michael3,Wells Rebecca G.1

Affiliation:

1. The University of Pennsylvania School of Medicine, Philadelphia, PA 19104

2. Yale University School of Medicine, New Haven, CT 06520

3. Robert Wood Johnson Medical School/University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903

Abstract

Hepatic stellate cells (HSC) play a central role in the pathogenesis of liver fibrosis, transdifferentiating in chronic liver disease from “quiescent” HSC to fibrogenic myofibroblasts. Transforming growth factor-β (TGF-β), acting both directly and indirectly, is a critical mediator of this process. To characterize the function of the TGF-β signaling intermediates Smad2 and Smad3 in HSC, we infected primary rat HSC in culture with adenoviruses expressing wild-type and dominant negative Smads 2 and 3. Smad3-overexpressing cells exhibited increased deposition of fibronectin and type 1 collagen, increased chemotaxis, and decreased proliferation compared with uninfected cells and those infected with Smad2 or either dominant negative, demonstrating different biological functions for the two Smads. Additionally, coinfection experiments suggested that Smad2 and Smad3 signal via independent pathways. Smad3-overexpressing cells as well as TGF-β-treated cells demonstrated more focal adhesions and increased α-smooth muscle actin (α-SMA) organization in stress fibers, although all cells reached the same level of α-SMA expression, indicating that Smad3 also regulates cytoskeletal organization in HSC. We suggest that TGF-β, signaling via Smad3, plays an important role in the morphological and functional maturation of hepatic myofibroblasts.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3