PAK1 and aPKCζ Regulate Myosin II-B Phosphorylation: A Novel Signaling Pathway Regulating Filament Assembly

Author:

Even-Faitelson Liron1,Ravid Shoshana1

Affiliation:

1. Department of Biochemistry, Institute of Medical Sciences, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel

Abstract

Many signaling pathways regulate the function of the cellular cytoskeleton. Yet we know very little about the proteins involved in the cross-talk between the signaling and the cytoskeletal systems. Here we show that myosin II-B, an important cytoskeletal protein, resides in a complex with p21-activated kinase 1 (PAK1) and atypical protein kinase C (PKC) zeta (aPKCζ) and that the interaction between these proteins is EGF-dependent. We further show that PAK1 is involved in aPKCζ phosphorylation and that aPKCζ phosphorylates myosin II-B directly on a specific serine residue in an EGF-dependent manner. This latter phosphorylation is specific to isoform B of myosin II, and it leads to slower filament assembly of myosin II-B. Furthermore, a decrease in aPKCζ expression in the cells alters myosin II-B cellular organization. Our finding of a new signaling pathway involving PAK1, aPKCζ, and myosin II-B, which is implicated in myosin II-B filament assembly and cellular organization, provides an important link between the signaling system and cytoskeletal dynamics.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Muscle Myosin II A: Friend or Foe in Cancer?;International Journal of Molecular Sciences;2024-08-30

2. Structure, regulation, and mechanisms of nonmuscle myosin-2;Cellular and Molecular Life Sciences;2024-06-15

3. Nonmuscle myosin 2 filaments are processive in cells;Biophysical Journal;2023-09

4. Staphylococcal Enterotoxin C2 Mutant-Induced Antitumor Immune Response Is Controlled by CDC42/MLC2-Mediated Tumor Cell Stiffness;International Journal of Molecular Sciences;2023-07-22

5. Non-muscle myosin 2 at a glance;Journal of Cell Science;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3