Mago Nashi Is Essential for Spermatogenesis inMarsilea

Author:

van der Weele Corine M.1,Tsai Chia-Wei1,Wolniak Stephen M.1

Affiliation:

1. Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742

Abstract

Spermatogenesis in Marsilea vestita is a rapid process that is activated by placing dry microspores into water. Nine division cycles produce seven somatic cells and 32 spermatids, where size and position define identity. Spermatids undergo de novo formation of basal bodies in a particle known as a blepharoplast. We are interested in mechanisms responsible for spermatogenous initial formation. Mago nashi (Mv-mago) is a highly conserved gene present as stored mRNA and stored protein in the microspore. Mv-mago protein increases in abundance during development and it localizes at discrete cytoplasmic foci (Mago-dots). RNA interference experiments show that new Mv-mago protein is required for development. With Mv-mago silenced, asymmetric divisions become symmetric, cell fate is disrupted, and development stops. The α-tubulin protein distribution, centrin translation, and Mv-PRP19 mRNA distribution are no longer restricted to the spermatogenous cells. Centrin aggregations, resembling blepharoplasts, occur in jacket cells. Mago-dots are undetectable after the silencing of Mv-mago, Mv-Y14, or Mv-eIF4AIII, three core components of the exon junction complex (EJC), suggesting that Mago-dots are either EJCs in the cytoplasm, or Mv-mago protein aggregations dependent on EJCs. Mv-mago protein and other EJC components apparently function in cell fate determination in developing male gametophytes of M. vestita.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3