A Conserved Dileucine Motif Mediates Clathrin and AP-2–dependent Endocytosis of the HIV-1 Envelope Protein

Author:

Byland Rahel1,Vance Patricia J.2,Hoxie James A.2,Marsh Mark1

Affiliation:

1. *Cell Biology Unit, MRC-Laboratory for Molecular Cell Biology and Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom; and

2. Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104

Abstract

During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxxØ motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIVmac239Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIVHxB2also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxxØ motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIVmac239Env GYxxØ motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3