Quantitative Analysis of Membrane Remodeling at the Phagocytic Cup

Author:

Lee Warren L.123,Mason David1,Schreiber Alan D.4,Grinstein Sergio1

Affiliation:

1. *Programme in Cell Biology, Hospital for Sick Children,

2. Interdepartmental Division of Critical Care Medicine, and

3. the ‡Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, M5G 1X8 Canada; and

4. Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Abstract

Nascent phagosomes, which are derived from the plasma membrane, acquire microbicidal properties through multiple fusion and fission events collectively known as maturation. Here we show that remodeling of the phagosomal membrane is apparent even before sealing, particularly when large particles are ingested. Fluorescent probes targeted to the plasma membrane are cleared from the region lining the particle before engulfment is completed. Extensive clearance was noted for components of the inner as well as outer monolayer of the plasmalemma. Segregation of lipid microdomains was ruled out as the mechanism underlying membrane remodeling, because markers residing in rafts and those that are excluded were similarly depleted. Selective endocytosis was also ruled out. Instead, several lines of evidence indicate that endomembranes inserted by exocytosis at sites of ingestion displace the original membrane constituents from the base of the phagosomal cup. The Fcγ receptors that trigger phagocytosis remain associated with their ligands. By contrast, Src-family kinases that are the immediate effectors of receptor activation are flushed away from the cup by the incoming membranes. Together with the depletion of phosphoinositides required for signal transduction, the disengagement of receptors from their effectors by bulk membrane remodeling provides a novel means to terminate receptor signaling.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3