Affiliation:
1. Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
Abstract
Although chromosome condensation in the yeast Saccharomyces cerevisiae has been widely studied, visualization of this process in vivo has not been achieved. Using Lac operator sequences integrated at two loci on the right arm of chromosome IV and a Lac repressor-GFP fusion protein, we were able to visualize linear condensation of this chromosome arm during G2/M phase. As previously determined in fixed cells, condensation in yeast required the condensin complex. Not seen after fixation of cells, we found that topoisomerase II is required for linear condensation. Further analysis of perturbed mitoses unexpectedly revealed that condensation is a transient state that occurs before anaphase in budding yeast. Blocking anaphase progression by activation of the spindle assembly checkpoint caused a loss of condensation that was dependent on Mad2, followed by a delayed loss of cohesion between sister chromatids. Release of cells from spindle checkpoint arrest resulted in recondensation before anaphase onset. The loss of condensation in preanaphase-arrested cells was abrogated by overproduction of the aurora B kinase, Ipl1, whereas in ipl1-321 mutant cells condensation was prematurely lost in anaphase/telophase. In vivo analysis of chromosome condensation has therefore revealed unsuspected relationships between higher order chromatin structure and cell cycle control.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献