Urokinase Receptor Cleavage: A Crucial Step in Fibroblast-to-Myofibroblast Differentiation

Author:

Bernstein Audrey M.1,Twining Sally S.2,Warejcka Debra J.2,Tall Edward1,Masur Sandra K.13

Affiliation:

1. Departments of *Ophthalmology and

2. Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226

3. Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029; and

Abstract

Fibroblasts migrate into and repopulate connective tissue wounds. At the wound edge, fibroblasts differentiate into myofibroblasts, and they promote wound closure. Regulated fibroblast-to-myofibroblast differentiation is critical for regenerative healing. Previous studies have focused on the role in fibroblasts of urokinase plasmingen activator/urokinase plasmingen activator receptor (uPA/uPAR), an extracellular protease system that promotes matrix remodeling, growth factor activation, and cell migration. Whereas fibroblasts have substantial uPA activity and uPAR expression, we discovered that cultured myofibroblasts eventually lost cell surface uPA/uPAR. This led us to investigate the relevance of uPA/uPAR activity to myofibroblast differentiation. We found that fibroblasts expressed increased amounts of full-length cell surface uPAR (D1D2D3) compared with myofibroblasts, which had reduced expression of D1D2D3 but increased expression of the truncated form of uPAR (D2D3) on their cell surface. Retaining full-length uPAR was found to be essential for regulating myofibroblast differentiation, because 1) protease inhibitors that prevented uPAR cleavage also prevented myofibroblast differentiation, and 2) overexpression of cDNA for a noncleavable form of uPAR inhibited myofibroblast differentiation. These data support a novel hypothesis that maintaining full-length uPAR on the cell surface regulates the fibroblast to myofibroblast transition and that down-regulation of uPAR is necessary for myofibroblast differentiation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3