Real-Time Monitoring of Calcineurin Activity in Living Cells: Evidence for Two Distinct Ca2+-dependent Pathways in Fission Yeast

Author:

Deng Lu1,Sugiura Reiko12,Takeuchi Mai1,Suzuki Masahiro1,Ebina Hidemine1,Takami Tomonori1,Koike Atsushi1,Iba Shiori1,Kuno Takayoshi1

Affiliation:

1. *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and

2. Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan

Abstract

In fission yeast, calcineurin dephosphorylates and activates the Prz1 transcription factor. Here, we identified the calcineurin-dependent response element (CDRE) in the promoter region of prz1+ gene and monitored the calcineurin activity in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of CDRE. Elevated extracellular CaCl2 caused an increase in calcineurin activity with an initial peak and then approached a sustained constant level in a concentration-dependent manner. In CaCl2-sensitive mutants such as Δpmc1, the response was markedly enhanced, reflecting its high intracellular Ca2+. Agents expected to induce Ca2+ influx showed distinct patterns of the CDRE-reporter activity, suggesting different mechanisms of calcineurin activation. Knockout of yam8+ or cch1+ encoding putative subunits of a Ca2+ channel abolished the activation of calcineurin upon exposure to various stimuli, including high extracellular NaCl and cell wall–damaging agents. However, knockout of yam8+ or cch1+ did not affect the activation of calcineurin upon stimulation by elevated extracellular Ca2+. The Pck2 protein kinase C-Pmk1 mitogen-activate protein kinase pathway was required for the stimulation of calcineurin via Yam8/Cch1-mediated Ca2+ influx, but it was not required for the stimulation by elevated extracellular Ca2+, suggesting two distinct pathways for calcineurin activation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3