Dynactin Is Required for Coordinated Bidirectional Motility, but Not for Dynein Membrane Attachment

Author:

Haghnia Marjan1,Cavalli Valeria1,Shah Sameer B.1,Schimmelpfeng Kristina1,Brusch Richard1,Yang Ge2,Herrera Cheryl1,Pilling Aaron3,Goldstein Lawrence S.B.1

Affiliation:

1. *Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0683;

2. Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037; and

3. Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein ( Mallik and Gross, 2004 ). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments ( Karki and Holzbaur, 1999 ). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis ( Puls et al., 2003 ). Thus, it is essential to understand the in vivo function of dynactin. To test directly and rigorously the hypothesis that dynactin is required to attach dynein to membranes, we used both a Drosophila mutant and RNA interference to generate organisms and cells lacking the critical dynactin subunit, actin-related protein 1. Contrary to expectation, we found that apparently normal amounts of dynein associate with membrane compartments in the absence of a fully assembled dynactin complex. In addition, anterograde and retrograde organelle movement in dynactin deficient axons was completely disrupted, resulting in substantial changes in vesicle kinematic properties. Although effects on retrograde transport are predicted by the proposed function of dynactin as a regulator of dynein processivity, the additional effects we observed on anterograde transport also suggest potential roles for dynactin in mediating kinesin-driven transport and in coordinating the activity of opposing motors ( King and Schroer, 2000 ).

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3