Cell-free translation systems prepared from starfish oocytes faithfully reflect in vivo activity; mRNA and initiation factors stimulate supernatants from immature oocytes.

Author:

Xu Z1,Hille M B1

Affiliation:

1. Department of Zoology, University of Washington, Seattle 98195.

Abstract

Meiotic maturation stimulates a change in the translation of stored mRNAs: mRNAs encoding proteins needed for growth of oocytes are translated before meiotic maturation, whereas those encoding proteins required for cleavage are translated after meiotic maturation. Studies of translational regulation during meiotic maturation have been limited by the lack of translationally active cell-free supernatants. Starfish oocytes are ideal for preparing cell-free translation systems because experimental application of the hormone 1-methyladenine induces their maturation, synchronizing meiosis. We have prepared such systems from both immature and mature oocytes of starfish. Changes in protein synthesis rates and the specificity of proteins synthesized in these cell-free translation supernatants mimic those seen in vivo. Supernatants both from immature and mature oocytes have a high capacity to initiate new translation because 90% of the proteins made are newly initiated from mRNAs. Cell-free supernatants from mature oocytes have a much higher rate of initiation of translation than those from immature oocytes and use the 43S preinitiation complexes more efficiently in initiation of translation. Similarly, we have shown that mRNAs and initiation factors are rate limiting in cell-free translation systems prepared from immature oocytes. In addition, cell-free translation systems prepared from immature oocytes are only slightly, if at all, inhibitory to cell-free translation systems from mature oocytes. Thus, soluble inhibitors, if they exist, are rapidly converted by cell-free supernatants from mature oocytes. The similarities between translation in our starfish cell-free translation systems and in intact oocytes suggests that the cell-free translation systems will be useful tools for further studies of maturation events and translational control during meiosis.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3