Affiliation:
1. Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520-8040
2. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
Abstract
The efficient maintenance of genome integrity in the face of cellular stress is vital to protect against human diseases such as cancer. DNA replication, chromatin dynamics, cellular signaling, nuclear architecture, cell cycle checkpoints, and other cellular activities contribute to the delicate spatiotemporal control that cells utilize to regulate and maintain genome stability. This perspective will highlight DNA double-strand break (DSB) repair pathways in human cells, how DNA repair failures can lead to human disease, and how PARP inhibitors have emerged as a novel clinical therapy to treat homologous recombination-deficient tumors. We briefly discuss how failures in DNA repair produce a permissive genetic environment in which preneoplastic cells evolve to reach their full tumorigenic potential. Finally, we conclude that an in-depth understanding of DNA DSB repair pathways in human cells will lead to novel therapeutic strategies to treat cancer and potentially other human diseases.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献