The microtubule cross-linker Feo controls the midzone stability, motor composition, and elongation of the anaphase B spindle in Drosophila embryos

Author:

Wang Haifeng1,Brust-Mascher Ingrid1,Scholey Jonathan M.1

Affiliation:

1. Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616

Abstract

Chromosome segregation during anaphase depends on chromosome-to-pole motility and pole-to-pole separation. We propose that in Drosophila embryos, the latter process (anaphase B) depends on a persistent kinesin-5–generated interpolar (ip) microtubule (MT) sliding filament mechanism that “engages” to push apart the spindle poles when poleward flux is turned off. Here we investigated the contribution of the midzonal, antiparallel MT-cross-linking nonmotor MAP, Feo, to this “slide-and-flux-or-elongate” mechanism. Whereas Feo homologues in other systems enhance the midzone localization of the MT-MT cross-linking motors kinesin-4, -5 and -6, the midzone localization of these motors is respectively enhanced, reduced, and unaffected by Feo. Strikingly, kinesin-5 localizes all along ipMTs of the anaphase B spindle in the presence of Feo, including at the midzone, but the antibody-induced dissociation of Feo increases kinesin-5 association with the midzone, which becomes abnormally narrow, leading to impaired anaphase B and incomplete chromosome segregation. Thus, although Feo and kinesin-5 both preferentially cross-link MTs into antiparallel polarity patterns, kinesin-5 cannot substitute for loss of Feo function. We propose that Feo controls the organization, stability, and motor composition of antiparallel ipMTs at the midzone, thereby facilitating the kinesin-5–driven sliding filament mechanism underlying proper anaphase B spindle elongation and chromosome segregation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3