Affiliation:
1. Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
Abstract
Various stimuli, including N-acetylglucosamine (GlcNAc), induce the fungal pathogen Candida albicans to switch from budding to hyphal growth. Previous studies suggested that hyphal morphogenesis is stimulated by transcriptional induction of a set of genes that includes known virulence factors. To better understand hyphal development, we examined the role of GlcNAc metabolism using a triple mutant lacking the genes required to metabolize exogenous GlcNAc ( hxk1Δ nag1Δ dac1Δ). Surprisingly, at low ambient pH (∼pH 4), GlcNAc stimulated this mutant to form hyphae without obvious induction of hyphal genes. This indicates that GlcNAc can stimulate a separate signal to induce hyphae that is independent of transcriptional responses. Of interest, GlcNAc could induce the triple mutant to express hyphal genes when the medium was buffered to a higher pH (>pH 5), which normally occurs after GlcNAc catabolism. Catabolism of GlcNAc raises the ambient pH rather than acidifying it, as occurs after dextrose catabolism. This synergy between alkalinization and GlcNAc to induce hyphal genes involves the Rim101 pH-sensing pathway; GlcNAc induced rim101Δ and dfg16Δ mutants to form hyphae, but hyphal gene expression was partially defective. These results demonstrate that hyphal morphogenesis and gene expression can be regulated independently, which likely contributes to pathogenesis at different host sites.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献