Affiliation:
1. Department of Biology, Indiana University, Bloomington, Indiana 47405-3700
Abstract
The yeast heat shock transcription factor (HSF) is regulated by posttranslational modification. Heat and superoxide can induce the conformational change associated with the heat shock response. Interaction between HSF and the chaperone hsp70 is also thought to play a role in HSF regulation. Here, we show that the Ssb1/2p member of the hsp70 family can form a stable, ATP-sensitive complex with HSF—a surprising finding because Ssb1/2p is not induced by heat shock. Phosphorylation and the assembly of HSF into larger, ATP-sensitive complexes both occur when HSF activity decreases, whether during adaptation to a raised temperature or during growth at low glucose concentrations. These larger HSF complexes also form during recovery from heat shock. However, if HSF is assembled into ATP-sensitive complexes (during growth at a low glucose concentration), heat shock does not stimulate the dissociation of the complexes. Nor does induction of the conformational change induce their dissociation. Modulation of the in vivo concentrations of the SSA and SSB proteins by deletion or overexpression affects HSF activity in a manner that is consistent with these findings and suggests the model that the SSA and SSB proteins perform distinct roles in the regulation of HSF activity.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献