Distinct Regulatory Proteins Control the Graded Transcriptional Response to Increasing H2O2 Levels in Fission Yeast Schizosaccharomyces pombe

Author:

Quinn Janet1,Findlay Victoria J.1,Dawson Keren2,Millar Jonathan B.A.3,Jones Nic2,Morgan Brian A.1,Toone W. Mark2

Affiliation:

1. School of Biochemistry and Genetics, The Medical School, University of Newcastle, Newcastle-upon-Tyne NE2 4HH, United Kingdom;

2. Cancer Research UK Cell Regulation Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 4BX, United Kingdom; and

3. Division of Yeast Genetics, National Institute for Medical Research, London NW7 1AA, United Kingdom

Abstract

The signaling pathways that sense adverse stimuli and communicate with the nucleus to initiate appropriate changes in gene expression are central to the cellular stress response. Herein, we have characterized the role of the Sty1 (Spc1) stress-activated mitogen-activated protein kinase pathway, and the Pap1 and Atf1 transcription factors, in regulating the response to H2O2 in the fission yeast Schizosaccharomyces pombe. We find that H2O2 activates the Sty1 pathway in a dose-dependent manner via at least two sensing mechanisms. At relatively low levels of H2O2, a two component-signaling pathway, which feeds into either of the two stress-activated mitogen-activated protein kinase kinase kinases Wak1 or Win1, regulates Sty1 phosphorylation. In contrast, at high levels of H2O2, Sty1 activation is controlled predominantly by a two-component independent mechanism and requires the function of both Wak1 and Win1. Individual transcription factors were also found to function within a limited range of H2O2 concentrations. Pap1 activates target genes primarily in response to low levels of H2O2, whereas Atf1 primarily controls the transcriptional response to high concentrations of H2O2. Our results demonstrate that S. pombe uses a combination of stress-responsive regulatory proteins to gauge and effect the appropriate transcriptional response to increasing concentrations of H2O2.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3