Dynamic changes in CCAN organization through CENP-C during cell-cycle progression

Author:

Nagpal Harsh12,Hori Tetsuya1,Furukawa Ayako3,Sugase Kenji3,Osakabe Akihisa4,Kurumizaka Hitoshi4,Fukagawa Tatsuo12

Affiliation:

1. Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan

2. Department of Molecular Genetics, National Institute of Genetics and Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan

3. Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan

4. Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan

Abstract

The kinetochore is a crucial structure for faithful chromosome segregation during mitosis and is formed in the centromeric region of each chromosome. The 16-subunit protein complex known as the constitutive centromere-associated network (CCAN) forms the foundation for kinetochore assembly on the centromeric chromatin. Although the CCAN can be divided into several subcomplexes, it remains unclear how CCAN proteins are organized to form the functional kinetochore. In particular, this organization may vary as the cell cycle progresses. To address this, we analyzed the relationship of centromeric protein (CENP)-C with the CENP-H complex during progression of the cell cycle. We find that the middle portion of chicken CENP-C (CENP-C166–324) is sufficient for centromere localization during interphase, potentially through association with the CENP-L-N complex. The C-terminus of CENP-C (CENP-C601–864) is essential for centromere localization during mitosis, through binding to CENP-A nucleosomes, independent of the CENP-H complex. On the basis of these results, we propose that CCAN organization changes dynamically during progression of the cell cycle.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3