Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1

Author:

Van Itallie Christina M.1,Tietgens Amber Jean1,Anderson James M.1

Affiliation:

1. Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892

Abstract

The organization and integrity of epithelial tight junctions depend on interactions between claudins, ZO scaffolding proteins, and the cytoskeleton. However, although binding between claudins and ZO-1/2/3 and between ZO-1/2/3 and numerous cytoskeletal proteins has been demonstrated in vitro, fluorescence recovery after photobleaching analysis suggests interactions in vivo are likely highly dynamic. Here we use superresolution live-cell imaging in a model fibroblast system to examine relationships between claudins, ZO-1, occludin, and actin. We find that GFP claudins make easily visualized dynamic strand patches between two fibroblasts; strand dynamics is constrained by ZO-1 binding. Claudin association with actin is also dependent on ZO-1, but colocalization demonstrates intermittent rather than continuous association between claudin, ZO-1, and actin. Independent of interaction with ZO-1 or actin, claudin strands break and reanneal; pulse-chase-pulse analysis using SNAP-tagged claudins showed preferential incorporation of newly synthesized claudins into break sites. Although claudin strand behavior in fibroblasts may not fully recapitulate that of epithelial tight junction strands, this is the first direct demonstration of the ability of ZO-1 to stabilize claudin strands. We speculate that intermittent tethering of claudins to actin may allow for accommodation of the paracellular seal to physiological or pathological alterations in cell shape or movement.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3