A Zinc-Finger Protein, Rst2p, Regulates Transcription of the Fission Yeast ste11 + Gene, Which Encodes a Pivotal Transcription Factor for Sexual Development

Author:

Kunitomo Hirofumi12,Higuchi Toru1,Iino Yuichi2,Yamamoto Masayuki12

Affiliation:

1. Department of Biophysics and Biochemistry, Graduate School of Science, and

2. Molecular Genetics Research Laboratory, University of Tokyo, Hongo, Tokyo 113-0033, Japan

Abstract

Schizosaccharomyces pombe ste11 encodes a high-mobility group family transcriptional activator that is pivotal in sexual development. Transcription of ste11 is induced by starvation of nutrients via a decrease of the cAMP-dependent protein kinase (PKA) activity. Here we report the identification of a novel transcription factor, Rst2p, that directly regulatesste11 expression. Cells in which the rst2gene was disrupted expressed ste11 poorly and were sterile, and this sterility could be suppressed by artificial expression of ste11. Disruption of rst2suppressed hypermating and hypersporulation in the PKA-null mutant, whereas overexpression of rst2 induced sexual development in the PKA-activated mutant. Cloning analysis indicated that Rst2p was a Cys2His2 zinc-finger protein carrying 567 amino acid residues. Rst2p could bind specifically to a stress response element–like cis element located in theste11 promoter region, which was important forste11 expression. Meanwhile, transcription ofste11 was reduced significantly by a defective mutation in itself. An artificial supply of functional Ste11p circumvented this reduction. A complete Ste11p-binding motif (TR box) found in the promoter region was necessary for the full expression ofste11, suggesting that Ste11p is involved in the activation of ste11. We conclude that transcription ofste11 is under autoregulation in addition to control through the PKA–Rst2p pathway.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3