A Conserved Mechanism for Bni1- and mDia1-induced Actin Assembly and Dual Regulation of Bni1 by Bud6 and Profilin

Author:

Moseley James B.1,Sagot Isabelle2,Manning Amity L.1,Xu Yingwu3,Eck Michael J.3,Pellman David2,Goode Bruce L.1

Affiliation:

1. Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454

2. Departments of Pediatric Oncology, The Dana-Farber Cancer Institute and Pediatric Hematology, The Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115

3. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115

Abstract

Formins have conserved roles in cell polarity and cytokinesis and directly nucleate actin filament assembly through their FH2 domain. Here, we define the active region of the yeast formin Bni1 FH2 domain and show that it dimerizes. Mutations that disrupt dimerization abolish actin assembly activity, suggesting that dimers are the active state of FH2 domains. The Bni1 FH2 domain protects growing barbed ends of actin filaments from vast excesses of capping protein, suggesting that the dimer maintains a persistent association during elongation. This is not a species-specific mechanism, as the activities of purified mammalian formin mDia1 are identical to those of Bni1. Further, mDia1 partially complements BNI1 function in vivo, and expression of a dominant active mDia1 construct in yeast causes similar phenotypes to dominant active Bni1 constructs. In addition, we purified the Bni1-interacting half of the cell polarity factor Bud6 and found that it binds specifically to actin monomers and, like profilin, promotes rapid nucleotide exchange on actin. Bud6 and profilin show additive stimulatory effects on Bni1 activity and have a synthetic lethal genetic interaction in vivo. From these results, we propose a model in which Bni1 FH2 dimers nucleate and processively cap the elongating barbed end of the actin filament, and Bud6 and profilin generate a local flux of ATP-actin monomers to promote actin assembly.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 233 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3