Tyrosine Phosphatase Epsilon Is a Positive Regulator of Osteoclast Function in Vitro and In Vivo

Author:

Chiusaroli Riccardo1,Knobler Hilla2,Luxenburg Chen3,Sanjay Archana1,Granot-Attas Shira4,Tiran Zohar4,Miyazaki Tsuyoshi1,Harmelin Alon5,Baron Roland1,Elson Ari4

Affiliation:

1. Departments of Cell Biology and Orthopedics, Yale University School of Medicine, New Haven, Connecticut 06510

2. Metabolic Unit, Kaplan Medical Center, Rehovot, Israel

3. Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel

4. Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel

5. Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

Protein tyrosine phosphorylation is a major regulator of bone metabolism. Tyrosine phosphatases participate in regulating phosphorylation, but roles of specific phosphatases in bone metabolism are largely unknown. We demonstrate that young (<12 weeks) female mice lacking tyrosine phosphatase epsilon (PTPϵ) exhibit increased trabecular bone mass due to cell-specific defects in osteoclast function. These defects are manifested in vivo as reduced association of osteoclasts with bone and as reduced serum concentration of C-terminal collagen telopeptides, specific products of osteoclast-mediated bone degradation. Osteoclast-like cells are generated readily from PTPϵ-deficient bone-marrow precursors. However, cultures of these cells contain few mature, polarized cells and perform poorly in bone resorption assays in vitro. Podosomes, structures by which osteoclasts adhere to matrix, are disorganized and tend to form large clusters in these cells, suggesting that lack of PTPϵ adversely affects podosomal arrangement in the final stages of osteoclast polarization. The gender and age specificities of the bone phenotype suggest that it is modulated by hormonal status, despite normal serum levels of estrogen and progesterone in affected mice. Stimulation of bone resorption by RANKL and, surprisingly, Src activity and Pyk2 phosphorylation are normal in PTPϵ-deficient osteoclasts, indicating that loss of PTPϵ does not cause widespread disruption of these signaling pathways. These results establish PTPϵ as a phosphatase required for optimal structure, subcellular organization, and function of osteoclasts in vivo and in vitro.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3