Aberrant Chromatin Remodeling by Retinoic Acid Receptor α Fusion Proteins Assessed at the Single-Cell Level

Author:

Qiu Jihui1,Huang Ying2,Chen Guoqiang2,Chen Zhu2,Tweardy David J.13,Dong Shuo12

Affiliation:

1. *Department of Medicine, Section of Infectious Disease, and

2. Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China

3. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and

Abstract

Acute promyelocytic leukemia (APL) is characterized by specific chromosomal translocations, which generate fusion proteins such as promyelocytic leukemia (PML)-retinoic acid receptor (RAR)α and promyelocytic leukemia zinc finger (PLZF)-RARα (X-RARα). In this study, we have applied lac operator array systems to study the effects of X-RARα versus wild-type RARα on large-scale chromatin structure. The targeting of these enhanced cyan fluorescent protein-lac repressor-tagged RARα-containing proteins to the gene-amplification chromosomal region by lac operator repeats led to local chromatin condensation, recruitment of nuclear receptor corepressor, and histone deacetylase complex. The addition of retinoic acid (RA) induced large-scale chromatin decondensation in cells expressing RARα; however, cells expressing X-RARα, especially PML-RARα, demonstrated insensitive response to this effect of all-trans retinoic acid (ATRA). Although we did not reveal differences in RA-dependent colocalization of either silencing mediator for retinoid and thyroid or steroid receptor coactivator (SRC)-1 with RARα versus X-RARα, the hormone-independent association between SRC-1 and X-RARα on the array has been identified. Rather, compared with cells expressing RARα, fluorescence recovery after photobleaching of live transfected cells, demonstrated decreased mobility of SRC-1 on the X-RARα–bound chromatin. Thus, the impaired ability of APL fusion proteins to activate gene transcription in response to ATRA corresponds to their reduced ability to remodel chromatin, which may link to their ability to impair the mobility of key nuclear receptor coregulators.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3