Inhibition of Pin1 Reduces Glutamate-induced Perikaryal Accumulation of Phosphorylated Neurofilament-H in Neurons

Author:

Kesavapany Sashi1,Patel Vyomesh2,Zheng Ya-Li1,Pareek Tej K.3,Bjelogrlic Mia1,Albers Wayne4,Amin Niranjana1,Jaffe Howard5,Gutkind J. Silvio2,Strong Michael J.6,Grant Philip1,Pant Harish C.1

Affiliation:

1. *Cytoskeletal Protein Regulation Section,

2. Laboratory of Oral and Pharyngeal Cancer, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892;

3. Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106

4. Section on Enzyme Chemistry,

5. Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, and

6. Robarts Research Institute, London, ONT, Canada N6A 5K8; and

Abstract

Under normal conditions, the proline-directed serine/threonine residues of neurofilament tail-domain repeats are exclusively phosphorylated in axons. In pathological conditions such as amyotrophic lateral sclerosis (ALS), motor neurons contain abnormal perikaryal accumulations of phosphorylated neurofilament proteins. The precise mechanisms for this compartment-specific phosphorylation of neurofilaments are not completely understood. Although localization of kinases and phosphatases is certainly implicated, another possibility involves Pin1 modulation of phosphorylation of the proline-directed serine/threonine residues. Pin1, a prolyl isomerase, selectively binds to phosphorylated proline-directed serine/threonine residues in target proteins and isomerizes cis isomers to more stable trans configurations. In this study we show that Pin1 associates with phosphorylated neurofilament-H (p-NF-H) in neurons and is colocalized in ALS-affected spinal cord neuronal inclusions. To mimic the pathology of neurodegeneration, we studied glutamate-stressed neurons that displayed increased p-NF-H in perikaryal accumulations that colocalized with Pin1 and led to cell death. Both effects were reduced upon inhibition of Pin1 activity by the use of an inhibitor juglone and down-regulating Pin1 levels through the use of Pin1 small interfering RNA. Thus, isomerization of lys-ser-pro repeat residues that are abundant in NF-H tail domains by Pin1 can regulate NF-H phosphorylation, which suggests that Pin1 inhibition may be an attractive therapeutic target to reduce pathological accumulations of p-NF-H.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3