Affiliation:
1. *Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102; and
2. Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607
Abstract
Sister chromatid cohesion is established during S phase near the replication fork. However, how DNA replication is coordinated with chromosomal cohesion pathway is largely unknown. Here, we report studies of fission yeast Ctf18, a subunit of the RFCCtf18replication factor C complex, and Chl1, a putative DNA helicase. We show that RFCCtf18is essential in the absence of the Swi1–Swi3 replication fork protection complex required for the S phase stress response. Loss of Ctf18 leads to an increased sensitivity to S phase stressing agents, a decreased level of Cds1 kinase activity, and accumulation of DNA damage during S phase. Ctf18 associates with chromatin during S phase, and it is required for the proper resumption of replication after fork arrest. We also show that chl1Δ is synthetically lethal with ctf18Δ and that a dosage increase of chl1+rescues sensitivities of swi1Δ to S phase stressing agents, indicating that Chl1 is involved in the S phase stress response. Finally, we demonstrate that inactivation of Ctf18, Chl1, or Swi1-Swi3 leads to defective centromere cohesion, suggesting the role of these proteins in chromosome segregation. We propose that RFCCtf18and the Swi1–Swi3 complex function in separate and redundant pathways essential for replication fork stabilization to facilitate sister chromatid cohesion in fission yeast.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献