The Microtubule-severing Proteins Spastin and Katanin Participate Differently in the Formation of Axonal Branches

Author:

Yu Wenqian1,Qiang Liang1,Solowska Joanna M.1,Karabay Arzu12,Korulu Sirin12,Baas Peter W.1

Affiliation:

1. *Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129; and

2. Department of Molecular Biology and Genetics, Istanbul Technical University, 34469 Istanbul, Turkey

Abstract

Neurons express two different microtubule-severing proteins, namely P60-katanin and spastin. Here, we performed studies on cultured neurons to ascertain whether these two proteins participate differently in axonal branch formation. P60-katanin is more highly expressed in the neuron, but spastin is more concentrated at sites of branch formation. Overexpression of spastin dramatically enhances the formation of branches, whereas overexpression of P60-katanin does not. The excess spastin results in large numbers of short microtubules, whereas the excess P60-katanin results in short microtubules intermingled with longer microtubules. We hypothesized that these different microtubule-severing patterns may be due to the presence of molecules such as tau on the microtubules that more strongly shield them from being severed by P60-katanin than by spastin. Consistent with this hypothesis, we found that axons depleted of tau show a greater propensity to branch, and that this is true whether or not the axons are also depleted of spastin. We propose that there are two modes by which microtubule severing is orchestrated during axonal branch formation, one based on the local concentration of spastin at branch sites and the other based on local detachment from microtubules of molecules such as tau that regulate the severing properties of P60-katanin.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 231 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3