Interaction between Tumor Suppressor Adenomatous Polyposis Coli and Topoisomerase IIα: Implication for the G2/M Transition

Author:

Wang Yang1,Azuma Yoshiaki1,Moore David2,Osheroff Neil3,Neufeld Kristi L.1

Affiliation:

1. *Department of Molecular Biosciences and

2. KU Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, KS 66045; and

3. Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232

Abstract

The tumor suppressor adenomatous polyposis coli (APC) is implicated in regulating multiple stages of the cell cycle. APC participation in G1/S is attributed to its recognized role in Wnt signaling. APC function in the G2/M transition is less well established. To identify novel protein partners of APC that regulate the G2/M transition, APC was immunoprecipitated from colon cell lysates and associated proteins were analyzed by matrix-assisted laser desorption ionization/time of flight (MALDI-TOF). Topoisomerase IIα (topo IIα) was identified as a potential binding partner of APC. Topo IIα is a critical regulator of G2/M transition. Evidence supporting an interaction between endogenous APC and topo IIα was obtained by coimmunoprecipitation, colocalization, and Förster resonance energy transfer (FRET). The 15-amino acid repeat region of APC (M2-APC) interacted with topo IIα when expressed as a green fluorescent protein (GFP)-fusion protein in vivo. Although lacking defined nuclear localization signals (NLS) M2-APC predominantly localized to the nucleus. Furthermore, cells expressing M2-APC displayed condensed or fragmented nuclei, and they were arrested in the G2 phase of the cell cycle. Although M2-APC contains a β-catenin binding domain, biochemical studies failed to implicate β-catenin in the observed phenotype. Finally, purified recombinant M2-APC enhanced topo IIα activity in vitro. Together, these data support a novel role for APC in the G2/M transition, potentially through association with topo IIα.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3